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The r e s u l t s  of a high a l t i t u d e  balloon measure- 

ment of the primary proton spectrum a t  energies 

between 57 MeV and 77 MeV are  reported. It i s  

concluded t h a t  the primary f l u x  of these low 

energy protons a t  Churchill i s  negl igible ,  both as 

compared t o  t h e  atmospheric secondary contribution 

and as  compared t o  the  primary f lux  a t  higher (-1 BeV) 

energies.  A s t a t i s t i c a l  upper l i m i t  of 

- dJ < .h9 protoi7s/m2-ster-sec-MeV 
dE 

a t  E 67 MeV i s  obtained. 

* 
Work supported by the N a t i o n a l  Aemnautics and Space A d m i n i -  

s t r a t i o n  and the Office of Naval Research Skyhook Program. 
- t 

Present address: Space Sciences Laboratory, University o f  
Cal i fornia ,  Berkeley, California.  



2. 

INTRODUCTION 

To understand t h e  s o l a r  lmdulation of the ga l ac t i c  beam 

and t h e  so l a r  acceleration of cosmic ray p a r t i c l e s ,  both p r i -  

marily lower energy phenomena, a thorough knowledge of t h e  

cosmic ray d i f f e r e n t i a l  energy spectrum a t  low energies i s  

fundamental. U n t i l  recently,  de f in i t i ve  experimental da ta  

has been lacking due t o  t h e  d i f f i c u l t i e s  encountered i n  low 

energy p a r t i c l e  measurements. The avai lable  information h a s  

been 

1955 

la rge ly  of a speculative nature. 

A s e r i e s  of balloon f l i g h t s  by Winckler and Anderson’ i n  

found evidence based upon a l t i t u d e  and l a t i t u d e  considera- 

t i o n s  t h a t  could be interpreted a s  implying a subs t an t i a l  f l u x  

of low energy p a r t i c l e s .  It has a l so  been suggested by Simpson 

t h a t  t h e  sun may continuously emit low energy p a r t i c l e s  i n  ap- 

preciable  numbers. On t h e  other hanc?, a very accurate d i f f e r -  

e n t i a l  f lux measurement made by McDonald and Webber3 near s o l a r  

minimum i n  1955 would, i f  extrapolated t o  lower energies, imply 

an inappreciable f l u x  of low energy protons. A d i r e c t  measure- 

ment  of t h e  proton spectrum by Vogt4 i n  1960 reportedly detected 

subs t an t i a l  numbers o f  primary protons i n  t h e  energy region 

around 100 MeV. Considered here are t h e  r e s u l t s  of a measure- 

men t  a t  primary proton energies between 57 and 77 MeV. 

2 
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PROCEDURE 

The p r inc ipa l  d i f f i c u l t y  encountered i n  measuring primary 

low energy protons w i t h  a balloon-borne de tec tor  i s  t h e  atmos- 

pheric  secondary contribution. The procedure adopted was t o  make 

use of t h e  geomagnetic cutoff t o  separate primaries from atmos- 

pheric secondaries. T h i s  was accomplished by f ly ing  i d e n t i c a l  

de tec tors  a t  two s i t e s :  Churchill,  Manitoba and Sioux Fa l l s ,  

South Dakota, A t  Churchill,  the v e r t i c a l  cutoff f o r  protons i s  

21  MeV, and f o r  deuterons 10.5 MeV. 5.6 From the same references, 

t h e  v e r t i c a l  cu tof fs  a t  Sioux Fal l s  are  approximately 740 MeV f o r  

protons and 460 MeV f o r  deuterons. Since t h e  primary cosmic ray 

p a r t i c l e s  of i n t e re s t  are protons of about 70 MeV and deuterons 

of about 85 MeV, i t  i s  c l ea r  t ha t  i n  t h e  v e r t i c a l  d i rec t ion ,  t h e  

primary pa r t i c l e s  i f  present should be seen a t  Churchill and 

should not be seen a t  Sioux Fal ls .  However, t h e  atmospheric 

secondaries w i l l  be: present a t  both locations.  Moreover, t h e  

atmospheric secondaries w i l l  be present i n  near ly  t h e  same amount 

a t  both locat ions i n  sp i te  of t h e  difference i n  geomagnetic cutoff.  

This conclusion i s  arr ived a t  upon examination of an i n t e g r a l  

spectrum obtained by McDonald and Webber' which shows t h a t  due t o  

t h e  shape of t h e  primary beam's d i f f e r e n t i a l  spectrum, approximately 

90 percent of t h e  t o t a l  cosmic ray i n t e n s i t y  seen a t  zero cutoff 

should be seen a t  a cutoff corresponding t o  t h a t  of Sioux Falls.  

Then at, chii.rc.hi11; a balloon-borne d e t e c t o r  should see t h e  primary 

p a r t i c l e s  i n  t h e  energy region of' in te res t  p lus  t h e  atmospheric 

secondaries, wh i l e  a t  Sioux Falls, only t h e  atmospheric second- 

a r i e s  should be seen. Upon subtract ing t h e  Sioux Fa l l s  counting 

r a t e  from t h e  Churchill  counting r a t e ,  one should obtain 
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t h e  cosmic ray  primary counting ra te  from which t h e  primary 

f l u x  may be found. 

T h i s  straightforward approach t o  t h e  atmospheric secondary 

problem is  complicated by t h e  re-entrant albedo e f f ec t .  A s  

pointed out by Treiman, t h e  re-entrant albedo contribution may 

be s ign i f i can t  f o r  p a r t i c l e  r i g i d i t i e s  below t h e  l oca l  geomagnetfc 

cutoff .  Then a t  Sioux P a l l s ,  these re-entrant albedo p a r t i c l e s  

should be seen as well a s  t h e  atmospheric secondaries. A t  Churchill 

any re-entrant  albedo must be below t h e  geomagnetic cutoff and so 

cannot a f f e c t  t h e  measured energy i n t e r v a l .  I n  summary, t h e  

d i f f e r e n t i a l  f luxes t o  be expected a t  t h e  two locat ions are:  

8 

a t  Churchill,  

a t  Sioux Fal ls ,  

i d J  i !‘d J ‘I 1’ - d J  - 
!... d E )  t o t a l  - ;.,.dE,; secondary i- (dE ,; re-entrant  albedo 

where t h e  quan t i t i e s  are  t o  be evaluated a t  appropriate energies. 

To j u s t i f y  t h e  approach of subt rac t ing  t h e  Sioux Fa l l s  f l u x  

from the  Churchill f lux,  i t  i s  necessary t o  show t h a t  t h e  re-entrant 

albedo is negl igible  as compared t o  t h e  atmospheric secondary f lux  

a t  balloon a l t i t udes .  A t heo re t i ca l  ca lcu la t ion  of t h i s  re-entrznt 
9 alhedC! e f f e c t  has bee!? performed by Rey, Ray n h t a i n s  8 val11e 

appropriate t o  Sioux F a l l s  of 

.’ d J ‘‘ a ) re-entrant albedo = 1.17 protons/m*-ster-sec-MeV 
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a t  85 MeV. 

obtained an uncorrected measured piloton flux a t  Sioux F a l l s  a t  a 

r e s idua l  atmospheric depth of 5.5 g/cm 

Looking ahead t o  t h e  experimental data,  there was 

2 of 

dJ : = 1.61 2 .43 protons/m*-ster-sec-MeV 
I ?E t o t a l  

a t  87 MeV and an uncorrected measured proton f l u x  a t  Churchill of 

, - d J  = 1.22 +, .18 protons/m 2 -ster-sec-MeV 
. dE,] t o t a l  

a t  67 MeV and a res idua l  depth of 3.0 g/cm2. 

imply t h a t  the re-entrant albedo i s  t h e  major contribution a t  

Sioux Fal ls .  It would fu r the r  imply t h a t  t h e  atmospheric second- 

a ry  f l u x  i s  negl igible  a t  Churchill a l so  and t h a t  t h e  proton f lux  

a t  Churchill  i s  predominantly composed of primary p a r t i c l e s .  

T h i s  would seem t o  

The r e s u l t s  of t h e  experiment under consideration here indicate 

t h a t  these conclusions a re  incor rec t  and t h a t  both a t  Churchill 

and Sioux F a l l s  t h e  p a r t i c l e s  seen a t  these low energies are 

atmospheric secondaries. Although t h e  experimental da t a  w i l l  show 

t h i s  t o  be t h e  case, a discussion of Ray's t heo re t i ca l  re-entrant 

albedo calculat ion is perhaps i n  order.  Us ing  a t ranspor t  equation 

describing t h e  motion of protons i n  a magnetic f i e l d  and losing 

energy due t o  ionizat ion loss i n  an atmosphere, Ray a r r ives  a t  a 

so3.ution f o r  t h e  proton flux leaving t h e  atmosphere i n  t h e  upward 

d i rec t ion .  Assuming t h e  protons t r a v e l  up out of the atmosphere 

along t h e  l o c a l  geomagnetic f i e l d  l i n e ,  a re-entrant  albedo f lux  

is ar r ived  a t .  The calculat ion appears t o  be oversimplified i n  

two respects :  (1) Re-entrant albedo p a r t i c l e s  are taken t o  be 
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a t  atmospheric depths of up t o  200 g/cm2. 

e f f e c t  on t h i s  upward moving beam which i s  considered 

The only or iginat ing 

at tenuat ion 

i s  the degradation i n  energy through ionizat ion losses .  Since the 

nuclear in te rac t ion  Length f o r  protons i n  a i r  i s  about 80 g/cm , 
by neglecting the at tenuat ion due t o  nuclear interact ions,  a 

s ign i f icant  e r r o r  may have been made, (2)  To f a c i l i t a t e  the 

performing of the i n t e g r a l  which i s  obtained f o r  the d i f f e r e n t i a l  

re-entrant  albedo in tens i ty ,  a mathematical approximation i s  made 

t h a t  a l l  upward moving albedo p a r t i c l e s  move along the loca l  f i e l d  

l i nes .  T h i s  approximation i s  physical ly  equivalent t o  allowing 

a l l  secondary p a r t i c l e s  emitted in any d i rec t ion  i n  the upper 

hemisphere t o  proceed precisely along the loca l  f i e l d  l i n e  w i t h  

no sp i ra l ing .  Since the geomagnetic f i e l d  l i nes  are  near ly  

v e r t f c a l  a t  the southern l a t i t ude  conjugate t o  Sioux Fa l l s ,  the 

p a r t i c l e s  a re  then assumed t o  t r a v e l  upward through a minimum 

res idua l  atmosphere. I n  reality, the bulk of the upward emitted 

secondary p a r t i c l e s  are  emitted a t  large zenith angles. The net  

e f f e c t  of the approximation i s  then t o  allow a l l  upward emitted 

secondary p a r t i c l e s  t o  proceed d i r e c t l y  out of the atmospheTe 

through the sho r t e s t  possible  layer  of res idua l  a i r .  T h i s  then 

permits the re-entrant  albedo p a r t i c l e  to s t a r t  out w i t h  a lower 

energy. I f ,  f o r  example, the p a r t i c l e  i s  t o  emerge from the atmos- 

phere w i t h  an energy of E MeV, then i t  must s t a r t  out w i t h  a some- 

what higher energy due t o  the ionizat ion losses  i t  w i l l  su f fe r .  

Allowing the p a r t i c l e  t o  pass through too t h i n  an atmospheric 

layer  i s  equivalent t o  allowing i t  t o  s t a r t  out w i t h  too low an 

i n i t i a l  energy. Due t o  the energy spectrum of the secondary 

p a r t i c l e s , ”  t h i s  r e s u l t s  i n  an over-estimate of the re-entrant  

10 2 



7.  
T h i s  underestimate of t h e  amount of atmosphere t h a t  albedo f l u .  

t h e  p a r t i c l e s  must pass through gi’eatly aggilavates t h e  omission of 

nuclear in te rac t ions  discussed i n  (1). 

e r r o r s  i s  t h a t  t h e  value of the theo re t i ca l  re-entrant  albedo f lux  

arr ived a t  by Ray i s  too  large by perhaps one t o  two orders  of 

magnitude. It therefore  seems likely t h a t  the re-entrant  albedo 

f l u x  i n  t h e  region of 100 MeV pi.oton energy i s  small or negl igible  

compared t o  t h e  locally-produced secondary f lux .  The experimental 

da ta  presented here show this t o  be t h e  case. 

The net r e s u l t  o f  these two 



a. 
INSTRUMEMTATI ON 

The immediate goal of the experiment was t o  make a precise 

measurement of t h e  primary proton f lux  over a r e l a t i v e l y  narrow 

energy i n t e r v a l  a t  as  low an energy as possible .  

The technique u t i l i z e d  t o  de t ec t  and i d e n t i f y  t h e  p a r t i c l e s  

was t o  make dE/dx and t o t a l  energy measurements on each p a r t i c l e .  

Such measurements serve t o  iden t i fy  t h e  type of p a r t i c l e  a s  w e l l  

a s  t o  measure i t s  energy. For t h i s  purpose three op t i ca l ly  sepamk 

s c i n t i l l a t i o n  phosphors were used. The de tec tor  i s  shown i n  cross  

sect ion i n  Fig. I. The top t h i n  c rys t a l ,  viewed only by the top 

photomultiplier tube, made the dE/dx measurement. 

k i n e t i c  energy measurement was made by t h e  Jower cesium iodide 

c r y s t a l  viewed only b8, the lower RCA 6199 tube. 

was a p l a s t i c  phosphor, op t i ca l ly  sealed from t h e  t o t a l  energy 

c rys t a l ,  which was viewed by t h e  RCA 6655A tube. 

anticoincidence arrangement, acceptable p a r t i c l e s  were required t o  

pass  through t h e  top c r y s t a l  and stop i n  t h e  lower c rys t a l .  Pulse 

h e i g h t  information from t h e  two cesium iodide c r y s t a l s  was t e l e -  

metered and recorded i n  d i g i t a l  form a t  t h e  ground receiving statLon. 

The instruments were individual ly  ca l ibra ted ,  and w i t h  the  aid of 

range-energy re la t ionships  i t  was possible t o  i d e n t i f y  each particle 

event as  t o  type of p a r t i c l e  and t o t a l  energy. 

The t o t a l  

I n  addition there 

By a coincidence- 
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FLIGHT INFORMATION AND DATA 

The work presented here i s  based on t h e  r e s u l t s  of two 

balloon f l i g h t s .  The Churchill f l i g h t ,  conducted on August 10 and 

11, 1962, u t i l i z e d  a 3 m i l l i o n  cubic foot  balloon and yielded 

481 minutes of usable data  a t  a f l o a t i n g  a l t i t u d e  equivalent t o  an 

e f f ec t ive  depth of 3.0 g/cm2. The Sioux Falls f l i g h t ,  conducted 

on November 5, 1962, u t i l i z e d  a 1 m i l l i o n  cubic foot  balloon and 

yielded 138 mfnutes of data a t  an e f f ec t ive  depth of 5.5 g/cm . 
The Sioux Falls f l i g h t  was shortened by high speed winds  a t  ballom 

a l t i t ude .  

2 

Both f l i g h t s  were made during periods unl ikely t o  show any 

s o l a r  ini"1uence beyond t h e  overa l l  modulation of the cosmic ray 

beam expected a t  t h i s  phase of the s o l a r  cycle. SpeckffL~lly, no 

solar cosmic ray events o r  Forbush decreases were in progress. 12 

In the  summarized r e s u l t s  of t h e  two f l i g h t s  presented below, 

the deuterons and t r i t o n s  are grouped together to  IIIpPOw s ta t lb tks  

and t o  f a c i l i t a t e  comparison w l t h  other  da$a t o  be discussed 

The raw da ta  are shown i n  Pigs. 2 and 3. 

2 Churchill,  10-11 Augilst 1962, 481 minutes, 3.0 g/cm 

p a r t i c l e  number of counts 

protons 45 

deuterons and t r i t o n s  24 

2 Sioux Fa l l s ,  5 November 1962, 138 minutes, 3 . 3  glcm- 

p a r t i c l e  number of counts 

l a t e r .  

protons 14 

deuterons and t r i t o n s  8 
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ANALYSIS 

One of the most s ign i f icant  measurements reported here i s  the 

i so topic  abundance of the 2 = 1 f l u x  a t  these low energies.  T h i s  

measurement, i n  p r inc ip le ,  can give much more discriminating 

information on the  o r i g i n  of these p a r t i c l e s  than can a gross 

measureinent of the 2 = 1 components taken together.  The measured 

values of the r a t i o  R = (H2 + H3) / (HI i- 8 e H3) are  

Churchill  .35 P .08 

Sioux Fa l l s  ,36 .15, 

where the e r r o r s  are  standard deviations.  The s imi l a r i t y  i n  the 

i so topic  abundance r a t i o s  a t  both locat ions i s  evidence tha t  the 

p a r t i c l e s  have the same origin.  The only source of these p a r t i c l e s  

common t o  both Churchill  and Sioux Fa l l s  i s  the atmospheric second- 

ary flux. 

abundance r a t i o s  a t  both s i t e s  means a common origin,  then we are  

immediately led t o  the conclusion t h a t  the  grea t  preponderance of 

p a r t i c l e s  sampled were of atmospheric secondary or igin.  

a l t e rna t ive  t o  the above assumption would be t o  adopt the viewpoint 

t h a t  t h i s  near equal i ty  of the i so topic  abmdance r a t i o s  i s  

coincidental .  This would imply t h a t  the ga l ac t i c  plus so la r  f l ux  

viewed a t  Churchill  had the same i so topic  composition a s  t h e  

re-entrant  albedo f lux  viewed a t  Sioux Falls. Although not impossjbk, 

the l ikel ihood appears qui te  small t h a t  cosmic ray hydrogen of 

solar or  ga l ac t i c  or ig in  should have the same i so topic  composition 

as  the hydrogen or iginat ing i n  nuclear in te rac t ions  i n  the southern 

hemisphere. 

I f  w e  make the assumption t h a t  the near equal i ty  of the 

The 

Th i s  argument i s  fur ther  strengthened by the r e s u l t s  
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of a recent  nuclear emulsion measunement by Appa Rao and Lavakare. 1 3  

They f i n d  no evidence f o r  iEi:';eI'OnS o r  i v i t o n s  fin the  ga l ac t i c  

cosmic ray beam a t  higher energies where protons are  qui te  abundant, 

As a l so  pointed out by these authors, a search by Greenstein14 f o r  

He i n  the sun yielded data  which can be inberpreted t o  give an 

upper l i m i t  f o r  so la r  deuterium which is f a r  lower t h a n  the observed 

abundance quoted above. The conclusion t h a t  must be drawn is t h a t  

the observed abundance r a t i o s  considered i n  the measurements re-  

ported here are  t o t a l l y  unlike the r a t i o s  expected f o r  cosmic ray 

hydrogen of so l a r  o r  ga l ac t i c  or igin.  HDwever, the observed r a t i o s  

are  typ ica l  of those of secondary p a r t i c l e s .  Powell, Fowler, and 

Perkins15 s t a t e  t h a t  R = ($ + H3) / (H1 3. H2 4- €I3) 2 .30 f o r  

secondary p a r t i c l e s  of approximately 50 MeV resu l t i ng  from cosmic 

ray in t e rac t ions  i n  nuclear emulsion. An accelerator  experiment 

by Deutsch16 u t i l i z i n g  332 MeV protons on various t a rge t s  can be 

in te rpre ted  t o  show a trend 'towards higher values of R for l i g h t e r  

3 

t a r g e t  nuclei ,  explaining t h e  small 

observed R and t h e  nuclear emulsion 

accelerator  experiments of i n t e r e s t  

neutrons on oxygen17 and H2 / (HI + 
on carbon. 18 

difference i n  the values of the 

R of reference 15. Two other  

here gave R = .34 f o r  300 MeV 

$) 0 -33 f o r  90 MeV neutrons 

The theo re t i ca l  work by Ray and the observed i so topic  

abundance r a t i o s  are  taken as  j u s t i f i c a t i o n  f o r  considering the 

re -en t ran t  albedo a negl igible  e f f e c t .  As s ta ted ,  the observed 

i so top ic  abundance r a t i o s  are  a s t rong argument f o r  the f luxes 

being predominantly due t o  atmospheric secondaries. To obtain a 

quant i ta t ive  r e s u l t  f o r  the primary f lux,  the secondary correct ion 

is made by the aforementioned subtract ion.  The diffBcul ty  which 
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i s  introduced by t h e  difference i n  a l t i t u d e  between t h e  f l i g h t s  i s  

overcome by using a method previously employed t o  correct  f o r  

atmospheric secondaries. A t heo re t i ca l  calculat ion of t h e  atmos- 

pheric secondary f lux as a function of a l t i t u d e  i s  made and then  

normalized a t  an a l t i t u d e  where i t  i s  known t h a t  t h e  f l u x  i s  pre- 

dominantly atmospheric secondaries. The normalized calculat ion 

can then be subtracted from the measurement made a t  t h e  a l t i t u d e  

of i n t e re s t  leaving t h e  primary flux a s  remainder. 

The atmospheric secondary calcual t ion being somewhat lengthy 

The calculat ion i s  based upon and involved i s  not included here. 

nuclear emulsion data and consis ts  of a summing of t h e  contributions 

of t h e  atmosphere above t h e  detector  divided i n t o  t h i n  layers .  

Any atmospheric secondary calculation must necessar i ly  be rather 

s t rongly dependent upon portions of t h e  input  data.  Since t h e  

a p p l i c a b i l i t y  of these da ta  must  be somewhat doubtful, it i s  not 

f e l t  t h a t  t h e  absolute magnitudes of t h e  calculated r e s u l t s  p r i o r  

t o  normalization are su f f i c i en t ly  re l iable  t o  be acceptable as a 

method of correcQion. The values arr ived a t  p r i o r  t o  normalization 

f o r  t h e  expected numbers of secondary counts are tabulated below, 

however, as a matter of i n t e r e s t .  

Sioux Fal l s ,  138 minutes a t  5.5 g/cm2 

p a r t i c  l e  secondaries expected 

protons 16 

deuterons and t r i t o n s  6 
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Churchill,  481 minutes a t  3.0 g/crn2 

p a r t i c l e  Secondaries expected 
_I_- 

protons 50 

deuterons and t r i t o n s  18 

The unnomnalized calculat ion is seen ko  be not i n  disagreement 

w i t h  the conclusion t h a t  t h e  pa r t i c l e s  observed were atmospheric 

secondaries. 

The calculat ion,  as s ta ted  e a r l i e r ,  was used merely as a t o o l  

t o  compare two f l i g h t s  a t  d i f f e ren t  a l t i t udes .  For the purpose of 

making comparison w i t h  t h e  earlier work by Vogt, all protons, 

deuterons, and t r i t o n s  were grouped together and considered t o  be 

protons. The subtract ion of t h e  Sioux Falls f l u x  (corrected f o r  

t h e  d i f fe rence  i n  a l t i t u d e ) ,  from the Churchill  f l u x  y i e lds  

TF dJ 18 particles/rn*-ster-sec-MV 

a t  P 360 MT 

i n  terms of r i g i d i t y .  

a negl ig ib le  f lux  of primary protons, the upper l i m i t  being 

s t a t i s t i c a l  

The r e s u l t  is t o  be in t e rp re t ed  as  Implying: 
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CONCLUSION 

The experimental r e s u l t  may be summarized by the statement 

t h a t  on August 10 and 11, 1962, any f l u x  of cosmic ray protonsviewed 
a t  a res idua l  depth of 3 g/cm 2 was negl igible  as  compared t o  the 

atmospheric secondary contribution. A s  previously discussed, t h i s  

r e s u l t  i s  i n  disagreement w i t h  measurements made by Vogt i n  1960. 

It i s  shown graphical ly  i n  Fig. 4 along w i t h  a measurement made 

by McDonald and Webber (reference 3)  when t h e  sun was a t  a phase 

i n  i t s  11-year cycle s imi la r  t o  t h a t  of 1962. It i s  t o  be 

emphasized t h a t  the r e s u l t  of t h e  experiment under discussion here 

i s  cons is ten t  w i t h  a negligible f lux  of these low energy protons. 

It i s  important t o  consider t h e  p o s s i b i l i t y  t h a t  t h i s  low 

energy port ion of the spectrum undergoes a marked time var ia t ion .  

It is, of course, qu i t e  possible t h a t  large f luc tua t ions  due t o  

s o l a r  influence could e x i s t .  The g rea t  f luxes  of these lower 

energy protons seen on occasion i n  conjunction w i t h  large solar 

f l a r e s  have been known for years. 2o 

resolve the difference between the conclusions reached by reference 

4 and t h i s  discussion can best be i l l u s t r a t e d  by f u r t h e r  considera- 

t ion  of the work presented i n  reference 4. The correct ion f o r  

atmospheric secondaries was based on a cUcula t ion  using nuclear 

emulsion data .  The calculation yielded an  atmospheric secondary 

correct ion which amounted t o  the order  of 20 percent of t h e  

That t i m e  dependence w i l l  not 

ot;aer\-ed O l - x - -  e t  Ck,. 1 - * . r m o t  n n n n - 4  a n  nhaanrrna A f ' l - t m h f  22 L A U h  Q V  V I J G  A L v Y V b U V  b L J b L L A b U  U Y U b & V b U .  4- L . L l ( j & a V  

August 22, 1960 yielded a reported primary f l u x  

Churchill,  22 August 1960, 4.0 g/cm2 

d J  r, 
e 2.0 protons/m"-ster-sec-MeV 

E @ 90 MeV. 
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By assuming f o r  the moment negl igible  atmospherj-c secondaries 

and again grouping protons, deuterons and t r i t o n s  together, c a l l i n g  

them protons, f luxes may be obtained from the experfment discussed 

here f o r  purposes of comparison. 

f luxes are  obtained: 

Churchill,  - 10-11 August 1962, 3.0 g/crn2 

I n  t h i s  manner the following 

- d J  = 1.87 f .22 protons/m2-ster-sec-MeV 
dE 

a t  E 2 67 MeV 

2 Sioux Falls, 5 November 1962, 5.5 g/cm 

dE dJ = 2.53 f .54 protons/m2-ster-sec-MeV 

a t  E 87 MeV. 

Viewed i n  t h i s  manner, the two experiments seem t o  be i n  agreement, 

t h e  disagreement lying wholly i n  the atmospheric secondary correc- 

t ion .  The difference i n  t h i s  correction, approximately 20 percent 

used i n  reference 4 and the approximate 100 percent arr ived a t  

here, of course, leads t o  quite divergent conclusions. 

Further measurements by Vogt and Meyer i n  l96l2l and by 

McDonald, Ludwig, and Bryant 22 i n  1961 and 1962 yielded uncorrected 

f luxes  which a re  again i n  reasonable agreement w i t h  the Churchill  

values  quoted above. A l i t t l e  consideration makes i t  appear un- 

l i k e l y  t h a t  the small differences i n  energy o r  the difference i n  

time of execution of these measurements can explain the difference 

i n  conclusions. 

It i s  f e l t  t h a t  fu r the r  attempts t o  measure the low energy 

proton f lux  a t  balloon a l t i t udes  even as  h i g h  as  1 g/cm2 can y ie ld  

nothing except an upper l i m i t ,  perhaps somewhat lower than fibe one 
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arr ived a t  here by gathering suf f ic ien t  data  t o  improve the 

s t a t i s t i c s .  

t ion  which shows t h a t  the majority of the secondary p a r t i c l e s  Gome 

from in te rac t ions  i n  the residual  atmosphere c loses t  t o  the 

detector .  T h i s  i s  i l l u s t r a t e d  by Fig. 5. The area under the 

curve i s  the theore t ica l  f l u x  of secondary protons wl th  res idua l  

energies between 9.0 MeV and 48.3 MeV, t h e  detector  f loa t ing  a t  

3.0 g/crn2. The curve i s  then dJ/dx, the f lux contribution as  a 

function of atmospheric depth. 

extreme a l t i t u d e  of 2.0 g/cm2, the area between 0 g/cm2 and 

1.0 g/cm2 i s  removed. 

w i l l  n o t  produce an appreciable change i n  the secondary f lux.  

equivalent statement is t h a t  the a l t i t u d e  versus i n t e n s i t y  curve 

i s  r a the r  f l a t  u n t i l  perhaps the l a s t  1.0 g/cm2 where it begins t o  

f a l l  o f f  s teeply.  There are  two implications here: first,  extreme 

care must be exercised i n  t h e  extrapolat ion of observed f luxes t o  

the top of the atmosphere; second, a s  s ta ted  previously, it appears 

impossible t o  obtain more than an upper l i m i t  a t  any feas ib le  balloon 

a l t i t u d e .  

T h i s  conclusion i s  based upm the secondary calcula- 

By f ly ing  t h i s  de tec tor  a t  the 

It i s  seen t h a t  such an increase i n  a l t i t u d e  

An 

The obvious solut ion t o  obtaining a b e t t e r  measurement i s  

w i t h  a satel l i te-borne detector .  However, any such measurement 

undertaken must have careful ly  conceived anticoincidence require- 

ments i n  view of the very l o w  expected f lux  value. 

has bearing upon a measurement made a t  somewhat higher energies 

by a de tec tor  aboard Explorer XII.23 

Landau spread of higher energy p a r t i c l e s  o r  due t o  nuclear i n t e r -  

ac t ions  I n  the s a t e l l i t e  mater ia l  o r  detector  i t s e l f  makes 

obtaining of credible  data  d i f f i c u l t .  

T h i s  reasoning 

Any confusion due t o  the 



FIGURE CAPTIONS 

1. Detector i n  cross sect ion.  

2-3. Curves labeled H 1 , H2, H 3 are  curves t o  be expected on bas i s  

of ca l ibra t ion  and range-energy relat ionships .  

i n  milliseconds a re  re la ted t o  energy losses  i n  MeV by the 

r e l a t ions  

Pulse durations 

T(E) = aE + b 

CAE + d.  * a x =  
The spread i n  the electrons i s  due pr inc ipa l ly  t o  s t a t i s t i c a l  

f luc tua t ions  i n  t h e i r  energy losses .  The spreads i n  the 

protons, deuterons, and t r i t o n s  are  due pr inc ipa l ly  t o  t h e  

resolut ion l imi ta t ions  of the detector .  The resolut ion of 

each CsI( T1) crystal-photomultiplier tube combination was 

approximately 108 fwhm. 

Summary of proton d i f f e r e n t i a l  r i g i d i t y  f l u x  measurements. 4. 

5. Atmospheric secondary contribution as a function of res idua l  

depth. 
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